Identification of a hotdog fold thioesterase involved in the biosynthesis of menaquinone in Escherichia coli.
نویسندگان
چکیده
Escherichia coli is used as a model organism for elucidation of menaquinone biosynthesis, for which a hydrolytic step from 1,4-dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) to 1,4-dihydroxy-2-naphthoate is still unaccounted for. Recently, a hotdog fold thioesterase has been shown to catalyze this conversion in phylloquinone biosynthesis, suggesting that its closest homolog, YbgC in Escherichia coli, may be the DHNA-CoA thioesterase in menaquinone biosynthesis. However, this possibility is excluded by the involvement of YbgC in the Tol-Pal system and its complete lack of hydrolytic activity toward DHNA-CoA. To identify the hydrolytic enzyme, we have performed an activity-based screen of all nine Escherichia coli hotdog fold thioesterases and found that YdiI possesses a high level of hydrolytic activity toward DHNA-CoA, with high substrate specificity, and that another thioesterase, EntH, from siderophore biosynthesis exhibits a moderate, much lower DHNA-CoA thioesterase activity. Deletion of the ydiI gene from the bacterial genome results in a significant decrease in menaquinone production, which is little affected in ΔybgC and ΔentH mutants. These results support the notion that YdiI is the DHNA-CoA thioesterase involved in the biosynthesis of menaquinone in the model bacterium.
منابع مشابه
Divergence of Substrate Specificity and Function in the Escherichia coli Hotdog-fold Thioesterase Paralogs YdiI and YbdB
The work described in this paper, and its companion paper (Wu, R., Latham, J. A., Chen, D., Farelli, J., Zhao, H., Matthews, K. Allen, K. N., and Dunaway-Mariano, D. (2014) Structure and Catalysis in the Escherichia coli Hotdog-fold Thioesterase Paralogs YdiI and YbdB. Biochemistry, DOI: 10.1021/bi500334v), focuses on the evolution of a pair of paralogous hotdog-fold superfamily thioesterases o...
متن کاملStructure and Catalysis in the Escherichia coli Hotdog-fold Thioesterase Paralogs YdiI and YbdB
Herein, the structural determinants for substrate recognition and catalysis in two hotdog-fold thioesterase paralogs, YbdB and YdiI from Escherichia coli, are identified and analyzed to provide insight into the evolution of biological function in the hotdog-fold enzyme superfamily. The X-ray crystal structures of YbdB and YdiI, in complex with inert substrate analogs, determined in this study r...
متن کاملCrystal structure of human thioesterase superfamily member 2 q , qq
Hotdog-fold has been identified in more than 1000 proteins, yet many of which in eukaryotes are less studied. No structural or functional studies of human thioesterase superfamily member 2 (hTHEM2) have been reported before. Since hTHEM2 exhibits about 20% sequence identity to Escherichia coli PaaI protein, it was proposed to be a thioesterase with a hotdog-fold. Here, we report the crystallogr...
متن کاملThe hotdog thioesterase EntH (YbdB) plays a role in vivo in optimal enterobactin biosynthesis by interacting with the ArCP domain of EntB.
In response to iron limitation, the siderophore enterobactin is synthesized and secreted by Escherichia coli. Its biosynthesis is performed by a series of enzymes encoded by the Ent gene cluster. Among the genes of this cluster, ybdB has not been implicated in enterobactin production to date. We demonstrate here an in vivo role for the hotdog protein EntH (YbdB) in the optimal production of ent...
متن کاملStructure and activity of the Pseudomonas aeruginosa hotdog-fold thioesterases PA5202 and PA2801.
The hotdog fold is one of the basic protein folds widely present in bacteria, archaea and eukaryotes. Many of these proteins exhibit thioesterase activity against fatty acyl-CoAs and play important roles in lipid metabolism, cellular signalling and degradation of xenobiotics. The genome of the opportunistic pathogen Pseudomonas aeruginosa contains over 20 genes encoding predicted hotdog-fold pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 195 12 شماره
صفحات -
تاریخ انتشار 2013